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HILBERT ALGEBRAS

By §. MINAKSHISUNDARAM

1. Since the publication of the papers ‘On Rings of Operators’ by
F.J. Murray and J. von Neumann, there has been an increasing interest
among mathematicians in the structure of topological algebras. Today
I wish to discuss some properties of a class of algebras called Hilbert
algebras.

Hilbert algebras are defined by means of the following axioms:

A: Aisa * algebra over the field of complex numbers in addition to
being an inner product space: that is to say

A;: A s a linear vector space over the field C of complex numbers.

A,: A is a ring where multiplication is associative and distributive
with addition, but not necessarily commutative.

Ay There exists an involution operation denoted by *, which asso-
ciates to each element o € A, a unique element a* € A such that:

(@) (@*)* = a,

(£) (Aa)* = Aa*, A € C, A complex conjugate of A,
(v) (a+0)* = a* + b¥,

(0) (ab)* = b*a*,

() xx* % 0 unless xz = 0.

A, Ais an inner product space: that is, to each pair of elements a, b
in A we can associate a scalar denoted by (a,b) which is linear
in ¢ and conjugate linear in b, satisfyving the following conditions:

(@) (Aa+pub,c) = A(a,8) +pu(b,c), A, ueC,

(B) (a,b) = (b,a),
(y) (@,a) > 0forall ain A and is zero if and only if @ = 0,
(6) (ab,c) = (a,ch*) =(b, a¥c),

(€) (a,b) = (b* a¥).

- We shall consistently use the following notations:
|zl = y/(x, ), the positive value of the square root being taken.
Greek letters will denote complex numbers and Roman letters (small
type) will denote elements of the algebra A or its completion. i
Now A may or may not be complete under the Hilbert norm topology.
If A is already complete it is natural to assume that multiplication is
continuous with respect to both the variables; in which case we have
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Ambrose’s H#-algebra whose structure is well known [cf. Loomis, An
Introduction to Abstract Harmonic Analysis].

If A is not complete, we denote by /i the completed Hilbert space.
Then, following classical procedure, the mappings x - ax and z — xa can
be defined for all #in /A and a in A so that they are continuous for fixed
a € A, throughout . But we cannot say anything about the existence
of 2y or yx when both x and y are in /A but outside A. So we add the
following axiom B to axiom A.

B. If A is not complete, the operators z —» ax and z — 2a are so
extended to A that they are closed linear operators in £, and these
operators are bounded if and only if @ € A.

Axiom B implies that the product ay certainly exists if at least one
of the two elements x, ¥ belongs to A. As an immediate consequence of
these axioms one readily proves that the * operation is a bounded opera-
tion which can be extended all over 4, so that to each element x €
there corresponds * so that |2| = [2*| and axiom A, is fulfilled. Further
the linear operators x — ax, * = ¥a, & = a*x, ¥ = xa*, for a € A have the
same bounds and their common bound, called the uniform norm of a,

is denoted by lal|.

With respect to the uniform norm, A will be in general an incomplete
Banach space, unless A contains the unit of multiplication.

There is still another axiom which is of interest, though not essential
for our discussion, namely:

(. Whenever @ and b are two elements in #, if there exists a third
element ¢ and a Cauchy sequence b,,, such that

b,—b
and (ab,, x) = (c,x) for every z,

then and only then ab exists and ¢ = ab.

This axiom assures us that the adjoint of the linear operator z — ax
is 2 — za* for any a € A. Tt is obvious that axiom C is of significance only
when a € # and is outside A.

2. The set A together with its completion 4 satisfying axioms A and B

is called a Hilbert algebra. Our purpose is to discuss the structure ot

this algebra. We introduce a few definitions and notations which we need.
(@) An element x € 4 is called self-adjoint if x = z*.
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(0) An element x is said to be positive if x = 2* and (zy,y) = 0 for
every y € A.

(¢) An element ¢ is called an idempotent if ¢* exists and e2 =e. If ¢
is also self-adjoint we call e a self-adjoint idempotent.

One easily verifies that a self-adjoint idempotent is invariably an
element in A.

(d) 1f 8is a subset of £, we denote by [S] its linear closure.

(¢) A closed linear manifold .# < £ is called a right ideal manifold, if
whenever z € .#, [xA] = .# A similar definition holds for left ideal
manifolds and (two sided) ideal manifolds. The right ideal manifold [¢A]
is called a principal right ideal manifold and a the generating element of it.

One easily verifies that [eA] = [ef] = efi.

(f) The Hilbert algebra {A,#} is called simple if /i does not contain
any (two-sided) ideal manifolds other than the trivial ones. The algebra
1s sald to be abelian if multiplication is commutative.

(9) There are two extensions of the algebra A to the algebra of linear
operators in /i viz. those linear operators L which satisfy the condition

L{zy) = L(x)y,

the mapping « — ax being denoted by L,(z), and those operators R
which satisfy the condition
R(xy) = aR(y),

the mapping z - za being denoted by R,(z). The totality of operators
of the type L will be denoted by #(A) and those of the type R will be
denoted by (A).

One verifies that the commutant of % is # and of # is .%.

That in the algebra A there are sufficiently many self-adjoint idem-
potents can be proved, in the usual way, by taking positive elements
in A, polynomials p(a), and their limits, in the Hilbert norm.

3. 1If the algebra A is abelian then A will be isometrically isomorphic
to square integrable functions on a locally compact Hausdorff space §
with a measure v, multiplication being defined as the ordinary multi-
plication of two funetionsin§. A will be isomorphie to bounded functions
vanishing at co. This can be proved either using Gelfand's isomorphism
theorem for commutative Banach algebras [cf. Dixmier, Les algébres
d’opérateurs dans Uespace hilbertien, 1957] or by observing that the
self-adjoint idempotents in A form a measure algebra and using Stone’s
theorem [Halmos, Measure Theory]. If A contains the unit of multi-
plication, § will be compact.
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4. If the algebra A is simple, that is to say there are no (two sided)
ideal manifolds in £ other than {0} and 4, then (and only then) #(A) and
ZA(A) will be factors. The self-adjoint idempotents in A will satisfy the
axioms of continuous geometry of von Neumann, in the sense that there
exists an equivalence relation among them and the classes of equivalent
idempotents form a well-ordered set with a dimension number attached
to the self-adjoint idempotent e, viz. d(e) = |¢]|2 There are only four
possible cases, viz. the four types of factors of von Neumann I, (n a
finite positive integer), I1,, I, II,. If A contains a unit and is simple,
the types [,,, 11, will occur, and the types I, and I[, will occur when A
does not contain a unit. I, and I, are called discrete while II; and 1],
are continuous types. [, and I, will oceur if the simple algebra A con-
tains minimal idempotents, and I/, and [, otherwise.

It is verified easily that I is isomorphic to the algebra of matrices of
order » with complex numbers as their elements, and I, to the totality

of bounded linear operators in a Hilbert space. The structure of I,
can be determined if we know the structure of I,

The structure of a simple algebra of type I, seems to be difficult
and intriguing. Von Neumann has construeted two types of examples
of an algebra of type I,. If A is a simple algebra of type /I, then A
contains a unit, whose norm we shall assume to be 1, and there are
no minimal self-adjoint idempotents. It is likely that the structure of A
can be determined in terms of its maximal abelian subalgebras. It is
quite likely the maximal abelian subalgebras of a simple algebra are
unitarily equivalent. In the case of I, the diagonal matrices form a
maximal abelian subalgebra and it is well known that all maximal
abelian subalgebras are unitarily equivalent to the subalgebra of diagonal
matrices. In the case of an algebra A of type I1,, let B be a maximal
abelian subalgebra and B its Hilbert completion. If we observe that the
dimension humbers of the self-adjoint idempotents in B take all values
between 0 and 1, then one can easily show that all maximal subalgebras
are unitarily equivalent.

5. If the algebra A is neither simple nor abelian then one has to study
the structure of A in relation to its centre. Let C denote the centre of
A and let Z be its Hilbert completion. A self-adjoint idempotent e in the
centre is said to be minimal if it cannot be expressed as sum of two
idempotents in the centre. If ¢ is minimal eA is a simple algebra with ef
as its Hilbert completion. C being abelian, there exists a locally compact
(or compact) Hausdorff space § and a measure v so that Z is isomorphic
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to L, functions on §. The atomic elements in § will correspond to
minimal idempotents in C, so that A can be expressed as a direct sum
of two algebras A, and A,, that is

.n"k = ﬁl"l‘ﬂg:
A=8+8 [A]=4H8 [Ad =4,

fi, and £, being orthogonal manifolds, where A, is a direct sum of simple
algebras and #, contains no minimal ideal manifolds. Further decom-
position of fi, is possible along the lines of von Neumann's reduction
theory, but we shall not discuss it here.
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